
Givenergy Local Data (GivTCP) Install

This runs through the steps needed to get Docker & GivTCP up and running on a Windows

machine although the theory/calls will be similar on all platforms. It first sets up GivTCP in it’s

most basic form, returning a REST service to prove you can get a response from the inverter.

More detailed setup (such as using MQTT etc) are explained later after proof that your system is

working has been done.

1: First grab Docker Desktop: Docker Desktop for Mac and Windows | Docker

2: Install Docker. (You may need to restart.)

3: You may also be prompted to install a secondary package “WSL 2 / Linux kernel update

package” – it will direct you to a download page to install it.

4: Hopefully in you should have the Docker software running now in the notification area.

5: Now we need to pull the GivTCP container from Docker Hub which will actually talk to the

inverter.

6: Open Command Prompt (Windows Start Menu > search “cmd”) which will open the Command

Line (black window with white text)

7: copy paste / type in and press enter:

docker pull britkat/giv_tcp-ma

You should see docker go and fetch the latest version as below

8: Any errors such as “docker not found” usually mean docker isn’t installed right. Try to install

again & perhaps try a fresh reboot after install.

9: Now we have GivTCP we need to run it (Copy Paste into The Command Line):

(Note: Already know your Inverter IP? – Use the command string in step 11-b to set it directly)

docker run --name GivTCP -d -p 6345:6345 britkat/giv_tcp-ma

Note: to change the name in Docker change “GivTCP” to whatever you want.

To change the port mapping (if they are already in use) change 6345:6345 to another set of ports.

Continued…

https://www.docker.com/products/docker-desktop

10: If you now open Docker, you should see GivTCP running (along with any others you are

running) like below:

11: If you click on the container, you will see it’s command line output. It *should* auto discover

your inverters IP and start booting up, however this is not always fool proof. If all is good then

going to 127.0.0.1:6345/runAll in your browser should bring up data from your inverter.

If it cannot find the inverter on the network (by clicking on the container and getting the error as

below) then there are a few options:

a) If you think you know the IP then you can try to ping the inverter from the cmd

window to prove you can connect with it by typing: ping XXX.XXX.XXX.XXX

or you can try and find it by looking through your routers DHCP list / interface and see

if you can see anything with a MAC address starting: 34-ea-e7

b) If the above works & you know your Inverters IP address you can delete the container

you just created in Docker (Blue recycle bin) & change the Docker run command to

point to your known IP and start a new container:

docker run --name GivTCP -d -p 6345:6345 -e INVERTOR_IP=XXX.XXX.XXX.XXX britkat/giv_tcp-ma

c) OR if all else fails, you can run my script which will (hopefully) setup everything for

you and even work its way through the entire network IP range until it finds the

inverter.

https://terravolt.co.uk/Downloads/Misc/Powershell/GivTCP_Auto_Discover_v0.2.bat

Continued…

http://127.0.0.1:6345/runAll
https://terravolt.co.uk/Downloads/Misc/Powershell/GivTCP_Auto_Discover_v0.2.bat

How the Script works:

1st it returns every IP that is on you machines local ARP table (this is a log of IP’s & MAC

addresses your machine has seen on the network previously since being switched on). It outputs

this as a .txt for you.

2nd it searches through this list looking for a match to the first 3 blocks of the Givenergy WiFi

Dongle’s MAC address (which in most cases is likely 34-ea-e7)

3rd If it finds a match it will offer to download the latest GivTCP from Docker Hub, configure it

with the IP address it has found & then start up GivTCP automatically in docker & open the

browser to the default data stream.

4th If it can’t find the inverter in the current IP list, it will offer to start at the very first IP address

on your network and try to ping it. It will increment by the address by 1 each time until it reaches

the end of the IP range (1-255). This will populate your machines ARP table with any “live”

connected device on your network. It will then start back at step 1 and hopefully then be able

match an IP address to your inverter. This will take some time though, so I’d put the kettle on as

it works its way through all 255 possible addresses.

Once the script Downloaded, you can simply open it in Notepad and edit the top few lines

before running it as follows -

set dockerName=givtcp_auto This is the name you want to call GivTCP in Docker

set dockerPort=6345 This is the port you want to use for GivTCP (default 6345)

set range=192.168.1 This is the first 3 sections of your home networks IP range

If you don’t know your local IP address you can usually find it going to Start > Settings >

Network & Internet > “Properties” and then scroll to the bottom.

You should see something along the lines of “IPv4 Address” - in my case this is 192.168.1.219

so I need to use 192.168.1 in my above script to set the range.

Note: no trailing “.” is needed

Most standard home routers will probably be either 192.168.0 or 192.168.1 although it could

be something completely different depending on the manufacturer.

Calls Available in GivTCP

Further Calls that can be used can by found on the GivTCP Page but some are shown below

Methods with GET can simply be called up from your browser, Methods with POST will need

something like cURL to be used to send a request with a payload.

Read Functions

URL Method payload

/runAll GET None

Control Functions

URL Method payload

/disableChargeTarget POST None

/enableChargeTarget POST None

/pauseChargeSchedule POST None

/resumeChargeSchedule POST None

/pauseDischargeSchedule POST None

/resumeDischargeSchedule POST None

/setChargeTarget POST {"chargeToPercent":"50"}

/setBatteryReserve POST {"dischargeToPercent":"5"}

/setChargeSlot1 POST {"start":"0100","finish":"0400","chargeToPercent":"55"}

/setChargeSlot2 POST {"start":"0100","finish":"0400","chargeToPercent":"55"}

/setDischargeSlot1 POST {"start":"0100","finish":"0400","dischargeToPercent":"55"}

/setDischargeSlot2 POST {"start":"0100","finish":"0400","dischargeToPercent":"55"}

/setBatteryMode POST {"mode":"1"}

/setDateTime POST {"dateTime":"dd/mm/yyyy hh:mm:ss"}

https://hub.docker.com/r/britkat/giv_tcp-ma

Calling the data from another device:

As GivTCP runs as its own webserver, you can call the data up & also make changes from another

device on the network by replacing the call to the standard local IP address with the IP address of

the device you’re running GivTCP / Docker on:

Local:

127.0.0.1:6345/runAll

Becomes (Example Device Running GivTCP) from another device:

192.168.1.150:6345/runAll

Note: You may need to allow Docker through your Firewall if you are not getting a response.

Continued….

http://127.0.0.1:6345/runAll
192.168.1.150:6345/runAll
192.168.1.150:6345/runAll

Environment Variables & Usage

So we’ve already touched on how to set an Environment Variable in docker, however this was just for forcing the Inverter IP. Most will also

want to use MQTT or send the output to a database etc… So you can set further variables to do that as below:

docker run --name GivTCP -d -p 6345:6345 -e INVERTOR_IP=XXX.XXX.XXX.XXX britkat/giv_tcp-ma

Further Environment variables can be set by simply adding in as many -e %Your Environment Variable=Whatever% as you need to the docker

run string you call from the cmd line. Remember you may need to delete your old / running GIVTCP Docker first (or give it a new name)

ENV Name Example Description

INVERTOR_IP 192.168.10.1
Docker container can auto detect Invertors if running on your host network. If this fails then add the

IP manually to this ENV

NUMBATTERIES 1 Number of battery units connected to the invertor

MQTT_OUTPUT True Optional if set to True then MQTT_ADDRESS is required

MQTT_ADDRESS 127.0.0.1 Optional (but required if OUTPUT is set to MQTT)

MQTT_USERNAME bob Optional

MQTT_PASSWORD cat Optional

MQTT_TOPIC GivEnergy/Data Optional - default is Givenergy.

LOG_LEVEL Error
Optional - you can choose Error, Info or Debug. Output will be sent to the debug file location if

specified, otherwise it is sent to stdout

DEBUG_FILE_LOCATION /usr/pi/data Optional

ENV Name Example Description

PRINT_RAW False Optional - If set to True the raw register values will be returned alongside the normal data

INFLUX_OUTPUT False Optional - Used to enable publishing of energy and power data to influx

INFLUX_TOKEN abcdefg123456789 Optional - If using influx this is the token generated from within influxdb itself

INFLUX_BUCKET giv_bucket Optional - If using influx this is data bucket to use

INFLUX_ORG giv_tcp Optional - If using influx this is the org that the token is assigned to

